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Monte Carlo simulations of the Asakura-Oosawa model for colloid-polymer mixtures confined between two
parallel repulsive structureless walls are presented and analyzed in the light of current theories on capillary
condensation and interface localization transitions. Choosing a polymer-to-colloid size ratio of q=0.8 and
studying ultrathin films in the range of D=3 to D=10 colloid diameters thickness, grand canonical Monte
Carlo methods are used; phase transitions are analyzed via finite size scaling, as in previous work on bulk
systems and under confinement between identical types of walls. Unlike the latter work, inequivalent walls are
used here: While the left wall has a hard-core repulsion for both polymers and colloids, at the right-hand wall
an additional square-well repulsion of variable strength acting only on the colloids is present. We study how the
phase separation into colloid-rich and colloid-poor phases occurring already in the bulk is modified by such a
confinement. When the asymmetry of the wall-colloid interaction increases, the character of the transition
smoothly changes from capillary condensation type to interface localization type. For very thin films �i.e., for
D=3� and a suitable choice of the wall-colloid interactions, evidence is found that the critical behavior falls in
the universality class of the two-dimensional Ising model. Otherwise, we observe crossover scaling between
different universality classes �namely, the crossover from the three-dimensional to the two-dimensional Ising
model universality class�. The colloid and polymer density profiles across the film in the various phases are
discussed, as well as the correlation of interfacial fluctuations in the direction parallel to the confining walls.
The broadening of the interface between the coexisting colloid-rich and polymer-rich phases �located parallel
to the confining walls� is understood in terms of capillary wave fluctuations. The experimental observability of
all these phenomena is briefly discussed.
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I. INTRODUCTION AND OVERVIEW

When fluid systems are confined in nanoscopic pores or
channels, one expects that the phase behavior can be pro-
foundly modified �1–10�. Such effects have found an increas-
ing attention recently, for instance, because of the current
interest to fabricate devices of nanoscopic size and to ma-
nipulate chemical reactions in nanoscopic reaction volumes
�“lab on a chip”�, etc. �11–16�. In addition, porous materials
with pores of nanoscopic widths are useful as catalysts or for
applications such as mixture separation, pollution control,
etc. �6,17–19�.

However, such applications often are based on empirical
knowledge, the theoretical understanding of confined fluids
still being rather limited �6–10�. In order to make progress
with the theoretical description of fluids under confinement
by the methods of statistical thermodynamics, it is desirable
to start with relatively simple model systems, where both the
geometry of confinement is well characterized, and the rel-
evant interactions among the fluid particles and between the
fluid particles and the confining solid surfaces are suffi-
ciently well understood. Last, suitable experimental tools
should be in principle available to put the theoretical predic-
tions to a test.

For these purposes it is hence useful to consider colloidal
suspensions �20–24�, exploiting the analogy between colloi-
dal fluids and fluids formed from small molecules, but taking

advantage of the much larger length scales �in the �m
range�, of the colloidal particles. Such systems allow detailed
experiments in which individual particles can be tracked
through space in real time using confocal microscopy tech-
niques �25�. Particularly useful systems in the present con-
text are colloid-polymer mixtures, which can undergo in the
bulk a liquid-vapor-like phase separation into a colloid-rich
phase �the “liquid”� and a colloid-poor phase �the “vapor”�
�23,26�. This phase separation is due to the �entropic� deple-
tion attraction between the colloids caused by the polymers.
A very simple model, due to Asakura and Oosawa �27� and
Vrij �28� describes the resulting phase separation in the bulk
�29–31,33,34� in excellent qualitative agreement with the ex-
periment �23�. While far away from the critical point, mean-
field theory �29� seems to account accurately for the Monte
Carlo �MC� simulation results �30–32� of the Asakura-
Oosawa �AO� model, a more extensive MC simulation study
�33,34� revealed clear evidence for Ising-like critical behav-
ior �35� over a broad regime of control parameters.

When such a colloid-polymer mixture is confined by hard
walls, also a depletion attraction of the colloids and the walls
occurs �36� and can cause �in semi-infinite geometry
�37–41�� the formation of wetting layers �32,42–46�. Due to
the very low interfacial tension between unmixed phases
�47–50�, thermally activated capillary-wave fluctuations
�51–55� are readily observable in experiment �56� and simu-
lation �50�. The phase behavior of colloid-polymer mixtures

PHYSICAL REVIEW E 78, 041604 �2008�

1539-3755/2008/78�4�/041604�13� ©2008 The American Physical Society041604-1

http://dx.doi.org/10.1103/PhysRevE.78.041604


in confinement can be also studied experimentally. There-
fore, this issue has been addressed in recent computer simu-
lation studies, considering the confinement of colloid-
polymer mixtures by two parallel hard walls a distance D
apart �9,57–59�. These studies have confirmed the fact that
lateral phase separation in a thin film geometry exhibits a
critical behavior belonging to the class of the two-
dimensional Ising model �58�. Also the the scaling relations
of Fisher and Nakanishi �60� have been verified. Unlike the
case of confinement of small molecule fluids in nanopores,
the size of the particles in colloidal fluids by far exceeds the
scale of the atomistic corrugation of the pore walls, and
hence the effects of this corrugation on the packing of par-
ticles near the walls �61,62� need not be considered here.

A very useful aspect of colloidal suspensions is that inter-
actions among such particles can be tuned by suitable surface
treatment �20–22,63�. For example, a short-range repulsion
between colloidal particles often is created by coating them
with a polymer brush �63,64�. Similarly, one could cancel
�partially or completely� the depletion attraction of colloids
towards a hard wall by coating the latter with a polymer
brush, choosing the grafting density and chain length of
these flexible polymers appropriately. In a colloid-polymer
mixture, however, for moderate chain stretching in the poly-
mer brush the polymers in the solution still can penetrate into

the brush, experiencing hence a much weaker interaction
than the colloidal particles. Only for strongly stretched
chains, as occurring in very dense polymer brushes �65�, a
repulsion of the polymer coils in the solution would result as
well, even if the chemical nature of the polymers in the so-
lution and in the brush is identical �“autophobicity effect”
�66,67��.

This tunability of the wall-colloid interactions opens the
possibility to realize a situation of a slit pore with asymmet-
ric walls: Suppose the left-hand wall is simply a hard wall,
attractive for the colloids, and the right-hand wall a coated
hard wall, repulsive for the colloids �Fig. 1� �68�. With a
colloid-polymer mixture confined between such asymmetric
walls, the possibility arises to realize the “interface localiza-
tion transition” �7,9,69–78�. This transition is illustrated in
Fig. 1. Here, the so-called “polymer reservoir packing frac-
tion” is defined by �p

r ��4� /3�Rp
3 exp��p /kBT� �with Rp and

�p the radius and the chemical potential of the polymers,
respectively� and plays the role of inverse temperature when
we compare the behavior to that of a fluid of small molecules
that undergoes a liquid-vapor transition. While in the bulk
colloid-polymer mixture phase separation sets in when the
variable �p

r exceeds the critical value �p,crit
r , this transition is

rounded in the thin film. Starting out from a layer enriched
with colloids on the left-hand wall and enriched with poly-
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FIG. 1. �Color online� Schematic phase diagrams of a colloid-polymer mixture confined between two parallel walls a distance D apart,
in the grand-canonical ensemble where the polymer reservoir packing fraction �p

r is used as ordinate axis and the difference between the
chemical potential of the colloids at bulk phase coexistence �coex�D=�� and the actual chemical potential of the colloids is used as abscissa
�upper part�. Phase coexistence in the bulk occurs along the vertical straight lines at �coex���−�=0. The left-hand phase diagram refers to
the case of symmetric walls, the right-hand one to asymmetric walls. The lower part of the figure indicates the phases that occur in these
phase diagrams �shaded regions denote colloid-rich domains�: In the case of symmetric walls, a colloid-rich phase �AI� coexists along the
line �=�coex�D ,�p

r � with a colloid-poor phase �AII�. In the case of asymmetric walls, the analogous phases are BIIa, BIIb; BIIa differs from
AI by the presence of a layer at the right-hand walls where polymers are enriched, and BIIb differs from AII by the fact that a surface
enrichment layer of colloids exists only at the left-hand wall. Finally, a state with a delocalized interface between colloid-rich and polymer-
rich phases �BI� exists along the continuation of the line �=�coex�D ,�p

r � beyond the critical point ��p,crit
r �D��, dotted line. The transition from

BI to either BIIa or BIIa when one moves along the dotted line is termed interface localization transition. For further explanations see the
text.
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mers at the right-hand wall, a stratified domain structure
forms, with a domain wall separating the colloid-rich phase
in the left-hand part and the polymer-rich phase in the right-
hand part of the slit pore �state BI in Fig. 1�. Only at a much
larger value �p,crit

r �D� a sharp phase transition occurs in the
thin film, with the colloid-polymer interface being bound ei-
ther to the right-hand wall �phase B IIa� or to the left wall
�phase B IIb�. Along the line �=�coex�D ,�p

r � these two
phases may coexist.

Of course, in an experiment one does not have at one’s
disposal the intensive variables � and the “polymer reservoir
packing fraction” �p

r , but rather the volume fractions of col-
loids and polymers,

�c =
4�

3
Rc

3Nc/V, �p =
4�

3
Rp

3Np/V , �1�

where V is the volume of the system, Rc the radius of the
spherical colloidal particles, and Nc, Np are the particle num-
bers of colloids and polymers, respectively. Since �c, �p are
densities of extensive thermodynamic variables, the first-
order transition lines �coex�D ,�p

r � in the plane of variables
�c, �p are split into two phase coexistence regions. Bringing
the thin film from the one-phase region to inside the two-
phase region �e.g., by adding polymers to the solution�, one
creates a state of the slit pore where in parts of the system the
interface is bound to the left-hand wall and in other parts it is
bound to the right-hand wall. These phases are then sepa-
rated by interfaces running across the film from the left-hand
to the right-hand wall �or vice versa�. A similar phase coex-
istence between the two phases AI, AII occurs in the case of
capillary condensationlike transitions for symmetric walls
�left-hand part of Fig. 1�. As always, the amounts of the
coexisting phases is controlled by the lever rule.

In the limit D→� of the film thickness, we recover a
semi-infinite system and then wetting transitions are ex-
pected to occur, so that, in the symmetric wall case, in the
region �p,crit

r ��p
r ��p,w

r for �=�coex��� both walls are
�completely� wet, while for �p

r ��p,w
r the walls are nonwet

�“incomplete wetting” �37–41��. In fact, the colloid-rich sur-
face enrichment layers indicated for the phase AII are the
precursors of wetting layers that appear when D→�. Of
course, no �infinitely thick �37–41�� true wetting layer fits
into a thin film of finite thickness D, and thus the wetting
transition at �p

r =�p,w
r �which we have assumed to be of sec-

ond order �37–41�� is rounded off in the thin film.
For asymmetric walls in the limit D→� the wetting tran-

sitions at both walls will occur, in general, for different val-
ues of �p

r at both walls. In Fig. 1 we have arbitrarily assumed
that �p,w

r,left��p,w
r,right. In the simplistic Ising model with “com-

peting surface magnetic fields” �69–74� H1 and HD, one can
consider a situation with HD=−H1, where these transitions
then coincide, �p,w

r,left=�p,w
r,right. However, such a special sym-

metry never is expected for a colloid-polymer mixture
�which has an asymmetric phase diagram already in the
bulk�. Note, however, that for D→� one does not expect
that for interface localization transitions �p,crit

r �D� converges
to the bulk critical point, �p,crit

r : Rather one expects a conver-

gence towards the wetting transition which is closest to the
bulk transition �7�.

In the present paper, we shall present evidence from
Monte Carlo simulations that the scenario sketched in Fig. 1
is correct, and we shall characterize the behavior of colloid-
polymer mixtures confined by asymmetric walls in detail,
considerably extending preliminary work �68�. Extensive re-
sults for the case of symmetric walls have been presented
earlier �58,59�.

In the next section, the main details of the simulation are
given. In Sec. III we present a study of the “soft mode” phase
�72� BI for a relatively thick film �thickness D=10 colloid
diameters�. Such phases with delocalized interfaces are of
great interest due to their large interfacial fluctuations
�72–74,79,80�, and consequences of such fluctuations have
been seen in experiments both on polymer blends �81� and
colloid-polymer mixtures �46�. Section IV then gives a dis-
cussion of the interface localization transition for an ultrathin
film �D=3�, attempting to verify the above statement that the
critical exponents should be those of the two-dimensional
Ising model. Section V discusses the phase behavior when
both film thickness and the strength of the short-range
colloid-wall repulsion are varied. Finally, Sec. VI summa-
rizes some conclusions.

II. WALL MODEL AND DETAILS OF THE SIMULATION

All our Monte Carlo simulations refer to the standard
Asakura-Oosawa �AO� model and use the same size ratio q
=Rp /Rc=0.8 as the previous work in the bulk �33,34� and for
symmetric walls �58,59�. In this case, it is known that the
critical point in the bulk occurs at �33,34�

�p,crit
r = 0.766 	 0.002, �c,crit = 0.1340 	 0.0002, �2�

�p,crit = 0.3562 	 0.0006,

and also the coexistence curve between the colloid-rich
phase ��c,�� and the polymer-rich phase ��c,v� is known
rather precisely, as well as the interfacial tension �33,34,50�.
We now consider a L
L
D geometry, where all lengths are
measured in units of the colloid diameter 2Rc, and periodic
boundary conditions are applied in x and y directions only.
For the thickness D, the values D=3, 5, 7, and 10 are used,
while the linear dimension L in parallel direction is chosen in
the range from L=15 to L=40 �also simulations with L
=120 were done, see below�. The left wall, located at z=0, is
taken purely repulsive for both colloids and polymers. As for
the interaction between the colloidal particles �which is infi-
nite if two colloids overlap and zero else, as well as the
colloid-polymer interaction which also is infinite if a colloid
particle overlaps a polymer and zero else�, we take a hard
wall repulsion,

Uw,c
� �z� = �, z � Rc, Uw,c

� �z� = 0, z � Rc, �3�

Uw,p
� �z� = �, z � Rp, Uw,p

� �z� = 0, z � Rp, �4�

for both colloids �Uw,c
� �z�� and polymers �Uw,p

� �z��. At the
right-hand wall, however, we add a square well potential of
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strength � and with an additional range Rc. Thus, the poten-
tial acting on the colloids is

Uw,c
r �z� = 0, z � D − 2Rc, �5a�

Uw,c
r �z� = �, D − 2Rc � z � D − Rc, �5b�

Uw,c
r �z� = �, z � D − Rc. �5c�

In the simulations presented below the parameter � is varied
between �=0 and �=4.0. The square well potential �5b�
could be realized by a polymer brush of low grafting density
and height Rc, for instance, so that the region of z where the
colloid penetrates into the brush leads to a finite energy pen-
alty � only �note that we use the convention that the tem-
perature kBT=1; of course, one could also consider square
well potentials of arbitrary range�. For the polymers, on the
other hand, the interaction is taken to be of the same type as
in Eq. �4�,

Uw,p
r �z� = 0, z � D − Rp, Uw,p

r �z� = �, z � D − Rp.

�6�

This potential models the interactions of polymers with a
hard wall coated with polymer brushes: Under good solvent
or theta solvent conditions �82�, polymers can overlap with
weakly stretched polymer brushes with little free energy
cost.

As in previous studies in the bulk �33,34� the simulations
are carried out mostly in the grand-canonical ensemble, us-
ing a dedicated grand-canonical cluster algorithm �33� to-
gether with reweighting schemes such as successive um-

brella sampling �83�. Phase transitions are analyzed by finite
size scaling methods �84–86�, varying suitably the lateral
linear dimensions L along the walls. For a description of
these techniques, the reader should consult our earlier work
�58,59�.

III. FORMATION AND PROPERTIES OF THE INTERFACE
IN THE SOFT MODE PHASE

It turns out that a phase behavior as sketched in the right-
hand part of Fig. 1 occurs if ��2.5. Figure 2 presents some
typical profiles of the average local volume fraction of col-
loids �c�z� and polymers �p�z� across the slit pore, for the
case �=2.5 and D=10. Panel �a� shows the profiles for �c
=0.18 and �p

r =0.7, corresponding to a state point where the
bulk colloid-polymer mixture is still in the one-phase region.
Nevertheless, the profiles of �c�z� and �p�z� exhibit pro-
nounced inhomogeneities: The polymer profile �c�z� dis-
plays a pronounced peak close to the right-hand wall, and
decays with increasing distance from the right-hand wall to a
plateau, almost independent of z, in the regime 3z6.
Very close to the left-hand wall, where the volume fraction
of colloids is strongly enhanced, the concentration of poly-
mers is also inhomogeneous �indirectly induced by the col-
loids, since polymers and colloids must not overlap�, before
�p�z� abruptly decreases to zero for z=Rp. The colloid profile
�c�z� shows a very pronounced peak close to z=Rc, on the
other hand, which can be attributed to the depletion attrac-
tion of the colloids to the hard wall. One can recognize a
second peak near z=1.6 and a weak third peak near z=2.5,
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FIG. 2. Colloid concentration
profiles �c�z� and polymer con-
centration profiles �p�z� as a func-
tion of z for a thin film with asym-
metric walls. At z=0 there is a
hard wall, where the potentials
Uw,c

� �z� and Uw,p
� �z� �Eqs. �2� and

�3�� act on colloids �c� and poly-
mers �p�. At z=D there is another
hard wall for both types of par-
ticles, with an additional square
well repulsion acting on the col-
loids only �Eqs. �3�, �4�, and �5a�–
�5c�� with a strength �=2.5. Pro-
files were obtained at �c=0.18,
�p

r =0.70 �a�, �c=0.18, �p
r =0.95

�b�, �c=0.05, �p
r =1.20 �c�, and

�c=0.33, �p
r =1.20 �d�. For pro-

files �c� and �d�, the choices �c

=0.05 and 0.33 roughly corre-
spond to the two branches of the
coexistence curve in the bulk.

DE VIRGILIIS et al. PHYSICAL REVIEW E 78, 041604 �2008�

041604-4



these peaks represent the well-known “layering” of hard par-
ticles near smooth repulsive walls. In the central part of the
thin film, for 3z6, the profile �c�z� is almost flat; thus
the surface enrichment of the colloidal particles at the hard
wall is a short-range effect. In the regime near the right-hand
walls, where the polymers are attracted, we recognize first a
smooth decrease of �c�z� in the range where the pronounced
increase of �p�z� sets in. For z=D−2Rc=9, where the addi-
tional repulsive potential sets in, a downward step in �c�z�
occurs, as expected.

It is interesting to contrast the behavior in panel �a�,
showing surface enrichment of colloids �left-hand side� and
polymers �right-hand side� at the walls confining an other-
wise homogeneous mixture, with the behavior in panel �b�,
which refers to a state where in the bulk phase separation has
occurred. Indeed, Fig. 2�b� gives rather clear evidence for a
phase separation in the z direction perpendicular to the con-
fining walls, of the type denoted as BI in Fig. 1. The polymer
rich phase occurs on the right-hand side of the thin film, and
�p�z� reaches very small values for z4. Near z=6 we rec-
ognize inflection points in both profiles �p�z�, �c�z� as are
typical for interfaces between coexisting phases. Again the
profile �c�z� exhibits the typical layering oscillations for
small z. No such layering occurs for the polymers near z
=D, of course, since the polymer-polymer interaction is zero,
the polymer-rich phase is like a dense ideal gas.

Figures 2�c� and 2�d� illustrate states corresponding to the
phases BIIb and BIIa in Fig. 1, respectively. In the polymer-
rich phase the interface position is at about z=2.5, and unlike
Fig. 2�a� �where the interface is freely fluctuating in the cen-
ter of the slit pore� the width of the interface is only about
two colloid diameters. Such a state is typical for a colloid-
polymer interface tightly bound to the left-hand wall. Figure
2�d� is the counterpart showing the profiles in the colloid-
rich phase, where almost all polymers are expelled, apart
from the immediate neighborhood of the right-hand wall.

We conclude that these profiles do give qualitative evi-
dence for the existence of all three phases BI, BIIa, and BIIb
in Fig. 1. We now study the phase with the delocalized in-
terface �BI� more closely. In particular, we are interested in
how the interfacial profiles change when the inverse-
temperature-like variable �p

r is varied �Fig. 3�. Defining an
order parameter m and the coexistence diameter � as follows:

m = ��c
� − �c

v�/2, � = ��c
v + �c

��/2, �7�

we choose the average volume fraction of the colloids such
that �c=�, and we attempt to fit the colloid density profile by
a tanh function,

�c�z� = � − m tanh��z − z0�/w�; �8�

here z0 is the position of the interface center and w is the
interfacial width. Figure 3�a� shows that Eq. �8� provides a
good fit of the colloid density profile, for all values of �p

r

from 0.90 to 1.10. For �p
r =0.80, however, the profile is ex-

tremely wide, due to the proximity of the critical point in the
bulk �Eq. �1��, and then the fit is less convincing. Indeed, the
polymer density profile �p�z� for �p

r =0.8 in Fig. 3�b� does
not even exhibit an inflection point, while for all larger val-
ues of �p

r an inflection point clearly is present �it occurs

roughly at z=z0, the inflection point of the polymer density
profile, which is roughly at z0�0.20	0.05�.

Of course, one notes that �c�z� does not reach the regime
of homogeneous “liquid” density �c

�, since for z−1.5 in
Fig. 3�a� the layering effect caused by the repulsive wall at
z=−5 already sets in. Likewise, the surface enrichment of the
polymers at the right-hand wall distorts the profiles for z
�3.5 in Fig. 3�b�. We also note that the profiles seem to have
common intersection points �which do not coincide with z0,
since both m and � depend on �p

r �. The common intersection
point of the colloid profiles is at z=0.5	0.05, while the
common intersection point of the polymer profile is at z
=0.0	0.1. Presumably, these common intersection points
are just numerical coincidences, and will not occur in the
general case �using other choices of � and D, for instance�.
However, the statistical effort for the data in Fig. 3 is rather
substantial, and hence no such systematic parameter varia-
tion has been attempted.

Figure 3�c� shows that the effective interfacial width w
extracted from the fit to Eq. �8� increases from about w
�1.5 near the critical point of the thin film �the estimation of
thin film critical points is discussed in the following sections�
to about w�2.4 for �p

r =0.8. Note that we obtain similar
values for w, applying the method that has been put forward
in the study of an Ising model �87� using the inflection point
of the �magnetization� profiles.
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Critical values �p,crit

r in the bulk and in the thin film �p,crit
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shown by arrows. Squares are for the choice D=10, L=120, circles
for D=10, L=40. The inset shows a log-log plot of w vs
�p

r /�p,crit
r −1. The solid line in the inset is a fit with a power law

with the exponent � /2=0.315 �see text�.
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It is important to recall that the width w of the interface in
the “soft mode” phase depends on both �p

r and the total film
thickness D �79–81,88�. This complicated behavior results
because the “intrinsic interfacial profile” �89,90� is broad-
ened by capillary waves �51–55�, but the long-wavelength
part of the capillary wave spectrum is suppressed by the
effective interface potential �39,40� caused by the walls. For
short-range forces due to the walls, as occurring here, the
corresponding prediction for the mean-square width is
�79–81,88�

w2 = w0
2�1 +

��/4
2 + �

D

w0
� + const. �9�

Here, w0 is the “intrinsic width,” which should be related to
the correlation length �b along the coexistence curve in the
critical region, w0=2�b, while the wetting parameter �
�39–41,91–94� for Ising-like systems is ��0.8 and the �un-
known� constant due to the short wavelength cutoff needed
in the capillary wave spectrum �79–81� can be neglected
near the critical point of the bulk. The intrinsic width should
then vary with �p

r as

w0 = ŵ0��p
r /�p,crit

r − 1�−�, � � 0.63, �10�

with an amplitude factor ŵ0 which is presumably in the range
0.2 ŵ00.5 �it is not accurately known since an unam-
biguous separation of intrinsic width and capillary wave
broadening is hardly possible in interfacial profiles �50,88��.
Since for the chosen values of �p

r we have D�w0 for D
=10 and ��� /4� / �2+���0.224, we expect that w
�1.497	w0 in our case, i.e., w in Fig. 3�c� should increase
with an exponent � /2. Disregarding the results for �p

r =0.8
and �p

r =0.85, which are too close to �p,crit
r and hence unre-

liable due to finite size effects, we find that the remaining
data for L=120 can be nicely fitted to a critical power law
with the expected exponent � /2=0.315 �see insert of Fig.
3�c��.

Thus, it clearly would be of interest to obtain reliable data
close to the bulk critical point, but then much larger systems
would be required, and this would require very substantial
computer resources, that are not available to us. But we em-
phasize the fact that no singular behavior can be observed
when at fixed D we vary �p

r throughout the bulk critical
region, passing the critical point. As an example, Fig. 4
shows density profiles for the case D=10, �c=0.195, L=40
and three values of �p

r close to �p,crit
r �Eq. �1��. One sees that

profiles for �p
r slightly above �p,crit

r and slightly below it are
hardly distinct from each other, all changes with respect to
�p

r are very gradual.
A very interesting property is the correlation function of

the colloidal particles in the interfacial region, z0−w�z
�z0+w �see Fig. 5�. If we were to consider an unconfined
interface, the capillary wave fluctuations would cause a
power-law decay of these fluctuations. Due to the confine-
ment, the interface feels an effective potential, and this leads
to the existence of a finite correlation length �
 of interfacial
fluctuations, as discussed extensively in the literature
�72,74,79–81,88�. In simulations of a model for a symmetri-
cal polymer mixture confined between competing walls, this

correlation length was studied as a function of film thickness.
Here we rather study this quantity as the interface localiza-
tion transition is approached. Figure 5�a� shows that the ra-
dial distribution function of colloidal particles in the interfa-
cial regions is well described by the formula

gc�r� = const exp�− r/�
�/	r . �11�

Equation �11� was also shown to work very well in the case
of the symmetric polymer mixture �79�. When �p

r approaches
the value �p,crit

r �D�, one sees a strong increase of �
, reflecting
the expected critical divergence of �
 at the interface local-
ization transition �which occurs at about �p,crit

r �D�
�1.13	0.03�. Arguments have been given to show that for
large enough D there is a region of mean-field-like behavior,
where �
 � �1−�p

r /�p,crit
r �D��−�
 with �
 =1 /2, while very

close to �p,crit
r �D� the critical behavior should fall in the class

of the two-dimensional Ising model �74�, �
 =1. However, the
accuracy of the data in Fig. 5�b� does not warrant an analysis
of this crossover behavior.

IV. INTERFACE LOCALIZATION TRANSITION IN VERY
THIN FILMS

Following the procedures used in our earlier study of cap-
illary condensation in the AO model, we carried out a finite-
size scaling analysis of the model with �=3.0 for a slit pore

-4 -2 0 2 4
z

0.0

0.5

1.0

-4 -2 0 2 4
z

0.0

0.5

1.0

ηp
r = 0.70

ηp
r = 0.76

ηp
r = 0.82

ηc(z ) ηp(z )

a) colloids b) polymers

D = 10, L = 40, ε = 3.0

FIG. 4. Density profiles �c�z� �left-hand part� and �p�z� �right-
hand part� for the case D=10, L=40, �=3.0, and �c=0.195. Three
choices of �p

r are included, as indicated.

�

�
�

�
�

�
�

�
�
��
��
��
��
�
�

�
�
��

�
�

�
�

��
��

��
��
��
�

0.0 5.0 10.0 15.0 20.0
r

10
-2

10
-1

10
0

ηp
r = 0.90

ηp
r = 1.00

�
�

�
�

0.7 0.8 0.9 1.0 1.1
ηp

r

0

5

10

15

20

25

30
ξ||

gc(r ) a) b)

D = 10, L = 40, ε = 3.0

ηp, crit
r (bulk) ηp, crit

r (film)

FIG. 5. �a� Radial distribution function gc�r� of the colloidal
particles, considering only distances r parallel to the walls, and
particles confined in the interfacial region z0−w�z�z0+w, for the
case D=10, L=40, �c=0.195, �=3.0 and two choices of �p

r , as
indicated. Curves are fits to Eq. �11�. �b� Plot of the parallel corre-
lation length �
 extracted from fits as shown in part �a�, versus �p

r .

DE VIRGILIIS et al. PHYSICAL REVIEW E 78, 041604 �2008�

041604-6



which is only D=3 colloid diameters thick. Varying the
chemical potential and applying successive umbrella sam-
pling �83�, the probability distribution P��c� is recorded. Ap-
plying suitable reweighting techniques �95�, one can apply
the equal area rule �96,97� to determine the chemical poten-
tial �coex where the peak of P��c� representing the vaporlike
phase and the peak representing the liquidlike phase have
equal weight. Figure 6�a� shows typical data near the second-
order interface localization transition of the thin film, and
Fig. 6�b� shows the fourth-order cumulant U4 as a function
of �p

r for various L from L=15 to L=30. Introducing an
order parameter M as M =�c− ��c�, the moments �Mk� are
defined as

�Mk� = 
0

1

MkP��c�d�c, �12�

and U4 then is given as the ratio of the square of the second
moment and the fourth moment,

U4 = �M2�2/�M4� . �13�

For large enough L, when finite-size scaling �84–86� holds, a
convenient recipe to find the critical point �p,crit

r is to record

U4 for different choices of L versus �p
r tuning � such that

�=�coex��p
r � and look for a common intersection point �84�.

For �p
r �p,crit

r one fixes � by the criterion that �M2� is maxi-
mal �for �p

r ��p,crit
r this criterion is an alternative way to

estimate �coex��p
r ��.

Figure 6�a� indicates the gradual change from a double
peak distribution to a single peak distribution, which is a
characteristic behavior for all second-order phase transitions.
Note that �p,crit

r does not correspond to the value of �p
r where

P��c� becomes flat over a broad range of �c: Rather
�p,crit

r �D� still corresponds to a double peak distribution
�84–86�. Figure 6�b� yields �p,crit

r �D=3�=1.300	0.005, i.e.,
a value very far away from �p,crit

r in the bulk �cf. Eq. �1��.
Although it is somewhat disappointing that one cannot really
find a unique intersection point of the cumulants U4��p

r � for
the various choices of L, one must recognize that for high
enough resolution of the coordinate axes such a scatter is
quite expected, due to residual corrections to finite-size scal-
ing �84�, and due to the statistical errors of the Monte Carlo
data �98�. More disturbing is the fact that the cumulant inter-
sections occur in a range of values in between the universal
constants U*�2 dim� and U*�3 dim� for the two- and three-
dimensional Ising model �99,100�, respectively,

U*�2 dim� � 0.856, U*�3 dim� = 0.629. �14�

As Fig. 6�b� shows, intersections occur in the range 0.73
�U*�0.80 �although there is some tendency of the inter-
section points to move upward with increasing L�. On the
other hand, the slope of the cumulants at the intersection
point, which is predicted to scale as �84�

dU4/d�p
r � L1/�, �15�

yields an effective exponent rather close to the prediction �
=1 for the two-dimensional Ising model.

Figure 7�a� shows simulation results for the order param-
eter m= ��c

�−�c
v� /2, where the volume fractions of colloids

�c
�, �c

v are not read off from the peak positions in Fig. 6�a�,
since for shallow peaks this would be a somewhat arbitrary
procedure, but rather we take m as the first moment of the
absolute value ��M��. Similarly, Fig. 7�b� shows the “suscep-
tibility” �0=L2D��M2�− ��M��2�. Both quantities are very
strongly affected by finite-size effects: Rather than exhibiting
a power-law decay, m� �1−�p,crit

r /�p
r �� with �=1 /8, one

finds that approaching �p,crit
r from above, the curves for m for

the different values of L splay out and develop very pro-
nounced “finite-size tails” �84,96� for �p

r ��p,crit
r . At �

=�p,crit
r one finds that the data are compatible with a power-

law decay �inset to Fig. 7�a��

m*�L� � m�L,�p,crit
r � � L−�/�. �16�

According to the two-dimensional Ising model, one would
expect � /�=1 /8. However, the straight line in the inset of
Fig. 7�a� rather indicates an effective exponent of �� /��eff
�0.20	0.02. Likewise, the susceptibility maxima, which
should scale as �84–86�
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r . �b� U4 plotted
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sections occur, 1.295�p,crit

r �D�1.305. The inset shows a log-log
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illustrates a slope 1 /�
 =1.035.
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�c
max � L�/�, �17�

with the two-dimensional Ising value being � /�=1.75, rather
suggest an effective exponent �� /��eff=1.60	0.03. Very
roughly, these exponents are compatible with the hyperscal-
ing relation �35� � /�+2� /�=2. Using the quoted effective
exponents 1 /�eff, �� /��eff, and �� /��eff, one finds that on a
scaling plot, where the variable t���p,crit

r /�p
r −1� is rescaled

with L1/� and m or � are rescaled with L�/� or L−�/�, one finds
reasonable data collapse �Fig. 8�. Such a partial success of a
finite-size scaling analysis, i.e., good data collapse is only
found when effective exponents are used that deviate some-
what from the theoretical values, has already been seen for
interface localization-delocalization transitions in the Ising
model �73,74� and hence these problems are not a surprise in
the present case.

V. OVERVIEW OF THE PHASE BEHAVIOR

We now describe some of our results for other film thick-
nesses D. In principle, the same type of analysis was carried
out for D=5 and D=7 as well, but it turned out that the

distribution P��c� for �c��c,crit�D� becomes increasingly
asymmetric when D gets larger �Fig. 9�. Also the cumulant
intersections get spread out over a rather large range of �p

r

�Fig. 10�, and these intersection points lie even in a range
that is below the three-dimensional Ising value, Eq. �14�. We
interpret this finding as an indication that with D getting
larger an increasing fraction of the critical region falls into
the region of mean-field-like behavior, as was theoretically
predicted �74�.

Also for fixed D the accuracy, with which �p,crit
r �D� can be

estimated, clearly deteriorates when � increases �Fig. 11�.
Note that data for D=5 and �=1.0 were already given in our
preliminary communication �68�, the choice �=1.0 corre-
sponds to a capillary condensation-type behavior, however.

Figure 12�a� shows estimates for the phase diagrams for
the interface localization transition for �=3 and three choices
of D, while Fig. 12�b� shows analogous data for D=5 but
varying �, and Fig. 13 shows a plot of �p,crit

r �D=5� vs �. One
sees that miscibility is enhanced if either D decreases, or �
increases, or both.

Finally we turn to the variation of �p,crit
r with � for the

choice D=5 �Fig. 13�. As found from a self-consistent-field
calculation for a symmetrical polymer mixture confined be-
tween competing walls �77�, the minimum of the curve �p,crit

r
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does not occur for the case of symmetric walls ��=0�, but for
an asymmetric situation. It also is remarkable and unex-
pected, that for large � the curve for �p,crit

r does not level off.
Figure 14 shows the counterpart of the schematic Fig. 1

�left-hand part�, presenting in the plane of variables �c and
�p

r �D� the numerical results for the coexistence curves be-
tween colloid-rich and polymer-rich phases, for the case of
2.0�4.0, i.e., the region where interface-localization
transitions occur �which are highlighted in the diagram by
arrows�. Note that unlike Fig. 1, �c��� was not subtracted
from �c, thus the bulk coexistence is not simply the ordinate
axis as in Fig. 1, but rather a nontrivial curve �which actually
is not very different from a straight line�. While for �=2.0
there is still a small but systematic offset between the curves
�c��p

r ,D=5� and �c���, for �=3.0 and �=4.0 the offset is
almost negligibly small. The part of the curves �coex��p

r �D��
to the left of �p,crit

r �D� represents the state BI in the schematic
phase diagram, Fig. 1, where a delocalized interface occurs
in the center of the film, separating the colloid-rich phase
adjacent to the left-hand wall and the polymer-rich phase
adjacent to the right-hand wall.

At this point, we return to the density profiles at phase
coexistence, and compare them for the same choice of �p

r

and D=10, but different values of �, �=2.0 and �=4.0 �Fig.
15�. For �p

r =1.5, the vaporlike phase reaches the same poly-

mer density for both choices of �; the main difference con-
cerns the colloid-rich side of the systems, the colloid enrich-
ment at the hard wall is more pronounced for �=4.0 than for
�=2.0. However, in the liquidlike colloid-rich phase the be-
havior is just the other way round: The layered profiles of the
colloid-rich phase near the hard wall are virtually identical,
while the polymer enrichment near the right-hand wall is
more pronounced for �=4.0 than for �=2.0. When one stud-
ies the effect of varying � in the one phase region for �p

r

��p,crit
r �D� however, one sees only a minor effect of � on the

segregated structure where an interface has formed parallel
to the walls �Fig. 15�b� and 15�d��, in particular for not ex-
tremely thin films.

VI. CONCLUSIONS

In this paper, the Asakura-Oosawa �AO� model for
colloid-polymer mixtures for a size ratio of polymers to col-
loids q=0.8 was studied by Monte Carlo simulation, consid-
ering thin films of thickness D=3 to D=10 colloid diameters
and confinement between asymmetric walls. One wall is sim-
ply a repulsive hard wall, to which the colloidal particles are
attracted via depletion forces; the other wall exerts a square-
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well-type repulsive interaction �of the range of the colloid
ratio, and variable strength �=0.5 to 4.0, in units of kBT
=1.0�. This study complements our earlier work on the AO
model in the bulk, and under confinement between two
equivalent hard walls, where capillary-condensation-like
phenomena occur; for the present model, we can smoothly
interpolate from capillary-condensation-like behavior for
small � �e.g., �=0.5 or 1.0�, when both walls show some
�though unequal� surface enrichment of colloids, to interface
localization-type transitions, occurring for large � �e.g., for �
varying from �=2.5 to �=4.0�. In the latter case, only the
hard wall attracts colloids while the other wall attracts poly-
mers. In this region, for large D the precise value of � has
little effect on the observed density profiles. When one then
increases the polymer reservoir packing fraction �p

r �which
plays an analogous role as the inverse temperature does for
thermally driven phase separation in small molecules mix-
tures�, one observes that the enrichment layers of colloids
and polymers at the walls gradually transform into two do-
mains of coexisting colloid-rich and polymer-rich phases,
separated by an interface parallel to the confining walls. We
find that the temperature dependence of the width of this
interface is considerably weaker than that of the bulk corre-
lation length �or “intrinsic” interfacial width, respectively�,
and account for this finding in terms of capillary wave broad-
ening of the interface. However, since for D�10 the inter-

face profiles are strongly affected by layering of colloids
near the hard wall, study of this broadening is difficult.

Only far away from the bulk critical point can a sharp
phase transition be observed, which we analyze by finite size
scaling methods. While for D=3 and not too large � the
critical value �p,crit

r �D� can be rather accurately determined,
and evidence can be found that the critical behavior falls in
the universality class of the two-dimensional Ising model, for
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r =1.33	0.02 ��=4.0�.
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larger D and/or larger � the Monte Carlo data are strongly
affected by problems of crossover between different univer-
sality classes and, thus, �p,crit

r �D� can be only estimated with
rather modest accuracy, allowing no firm statements about
critical exponents. Approaching the transition from �p

r

��p,crit
r �D�, we find a strong increase of the correlation

length �
 describing the correlation of interfacial fluctuations,
but again the accuracy of our results would not suffice to
estimate the value of the associated critical exponent. In
view of the fact that even for the simple Ising model con-
fined between competing boundaries a clarification of the
critical behavior turned out to be very difficult, the problems
encountered for the present more complicated model, which
is strongly asymmetric even in the bulk, are not at all sur-
prising.

The fact that observation of interface localization does not
require very special conditions at the walls, but occurs for a
broad parameter range, is encouraging for possible experi-

mental tests of our results. We suggest that a repulsive inter-
action acting only on the colloids could be realized by cre-
ating a wall with a polymer brush at low grafting density.

A very interesting problem, not accessible to the present
grand-canonical Monte Carlo study, would be the dynamics
of phase separation in such a confined thin film. We hope to
report on such studies of a related model in the future.
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